Role of filling materials in a P-wave interaction with a rock fracture

نویسندگان

  • W. Wu
  • J. Zhao
چکیده

a r t i c l e i n f o The purpose of this study is to investigate the role of filling materials (e.g., quartz sand and kaolin clay) in the interaction between a P-wave and a rock fracture. The specific fracture stiffness reflects the seismic response of a filled fracture, while the wave transmission coefficient describes P-wave transmission across the filled fracture. A series of experimental tests using a split Hopkinson rock bar technique are conducted on artificial rock fractures that are filled with pure quartz sand, sand–clay mixtures with 30%, 50% and 70% clay weight fractions, and a pure clay matrix. The boundary conditions of the filled fracture, i.e., the displacement and stress discontinuities, are used in the method of characteristic lines to calculate the wave transmission coefficient in the time domain. The analytical results agree well with the experimental results. The specific fracture stiffness and the wave transmission coefficient decrease with increasing filling material thickness. When the clay matrix completely fills the void space of the quartz sand, the filled fracture exhibits the largest specific fracture stiffness and promotes P-wave transmission. In general, the wave transmission coefficient is strongly related to the specific fracture stiffness, regardless of the filling material composition or the filling material thickness. When seismic waves propagate through rock masses, rock fractures attenuate the wave amplitude and decrease the wave velocity. Natural fractures are often filled with weak materials, e.g., sand and clay. These filling materials and their mixtures influence the mechanical and physical behaviors of rock fractures, such as strength, porosity and permeability (Crawford et al., 2008). During seismic wave propagation across a filled fracture, wave attenuation is mainly determined by the dynamic compaction of filling materials and by wave reflection and transmission at fracture interfaces (Wu et al., 2013a,b). The seismic response of a filled fracture, such as opening and closure, may induce rock mass collapse. The interaction between a P-wave and a filled fracture is thus important to assess seismic energy radiation and rock mass instability. A previous study (Wu et al., 2013c) investigated the effects of the fracture thickness, the particle size of the filling sand and the loading rate of an incident wave on the dynamic properties of a filled fracture. The fracture properties and the loading conditions affect the dynamic compaction of filling materials. The dynamic compaction also depends on filling material types. For instance, when a …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Rock Fracture Filling on Mode I and II Fracture Toughness

This paper focuses on some fracture toughness tests performed on the pre-cracked Brazilian specimens of rock-like materials. Also the effect of rock fracture filling on the fracture toughness was considered experimentally.  Fracture toughness is a key parameter for studying the crack propagation and fragmentation processes in rock structures. Fracture mechanics is an applicable tool to improve ...

متن کامل

Seismic response of adjacent filled parallel rock fractures with dissimilar properties

a r t i c l e i n f o The purpose of this study is to analytically predict and to experimentally investigate the seismic response of adjacent filled parallel rock fractures with dissimilar properties (e.g., fracture thickness and stiffness). The time-domain recursive method is extended to predict that a P-wave propagates normally across the filled parallel fractures using the specific stiffness...

متن کامل

Numerical analysis of energy transmission through discontinuities and fillings in Kangir Dam

A considerable amount of energy is released in the form of shock wave from explosive charge detonation. Shock wave energy is responsible for the creation of crushing and fracture zone around the blast hole. The rest of the shock wave energy is transferred to rock mass as ground vibration. Ground vibration is conveyed to the adjacent structures by body and surface waves. Geological structures li...

متن کامل

Correlation between P-wave velocity and some mechanical properties for sedimentary rocks

Seismic techniques, which are known as nondestructive geophysical methods, are commonly used by engineers working in various fields such as mining, civil, and geotechnical engineering. They are frequently employed to investigate certain properties of rocks. Ultrasonic measurements can be applied in various application areas such as rockbolt reinforcement1, blasting efficiencies in the rock mass...

متن کامل

On the crack propagation modeling of hydraulic fracturing by a hybridized displacement discontinuity/boundary collocation method

Numerical methods such as boundary element and finite element methods are widely used for the stress analysis in solid mechanics. This study presents boundary element method based on the displacement discontinuity formulation to solve general problems of interaction between hydraulic fracturing and discontinuities. The crack tip element and a higher order boundary displacement collocation techn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014